tUUGULLLLLLL44444404440444444444444444404444004440040084341840040004444444044044444+4

$88% 33538
$ $ $
$ $ % $
$ $ 5588
¥ $ %
$ $ &

5% ¥

USER=0P GUEUE=LPT DEVICE=aLPAl
SEQ@=16 GQPRI=127 LPP=63 CPL=80 COPIES=1 LIMIT=41

CREATED: 30=MAR=77 9:48:26
ENQUEUED: 14=JUN=77 13:07:46
PRINTING: 14=JUN=77 13:07:48

PATH=:MEMOIMEMOS$196.LS

¥ 5 35588 B 3 $8% ¥ $ 588 389 ¥ $5%
$% $% § 38 3% ¢ $ $8%% $%)) $ $ $ $
3 £ 8 § $ 8 3 5 $ % 3% 3 3 8 $ b

$ 3 8 3$5%d $ $§8% 3 $ $88% 3 $558 $888 $ 389
¥ $ % $ 5 3 $ § % 3 8 8 ¥ $)
3 F % $ % $ 5388 $ $ %) $% b 3 §
& $ $8¥8s 3 388 3 35589 3% $8¢% 5% $8358 598

+A444444404444644444444404444444444444444444444444444044444444444440444404444440444404+

A0S XLPT REV 01,00

To: J. Clancy, C. Mundie, S, Schleimer, W. Slack,
R. Belgard, J. Doodar, R. Gruner, 5. Redfield, S. Wallach

From: J. Ahlstrom, M, Druke, W. Wallach
MEMO 196 MARCH 12, 1977

Subject: SUMMARY MIX AND FUNCTION BY MODULES FOR
COBOL, FORTRAN, SPL, OSkerne]

Note: The following mix weights are totally SWAG

MIX SUMMARY

COMMERCIAL INSTALLATIONS))
The standard mix for commercial installations is guessed to be:

70% Cobol object programs
30% Spe) compilers, data base, debuggers, 0S

NUMERICAL INSTALLATIONS) “ .
The standard mix for numerical installations is guessed to be:

60% Fortran object programs ,
40% Spl compilers, 0SS, debuggers, editors

MIXED INSTALLATIONS

Much more var1abilwty in mix can be expected from mixed
1nstallat1ons than from exclusively commerc1a1 or numervcal ones, This
mix is presented for a mythical "perfectly balanced" mixed installation:

33% Cobol
33% Fortran
34% Spl

CONTRIBUTIONS TO PERFORMANCE BY OPERATION BY LANGUAGE

COMMERCIAL NUMERICAL MIXED
cosoL
addpacked 4% 2%
cmprpacked 1% 3%
cmprdisplay 30% 15%
movechars 20% 10%
adddisplay 4% 2%
mpypacked 2% 1%
FORTRAN)
add floating 11% 6%
index add 11% 6%
cmpri&branch 10% 5%
inc]l do update
move 7% 3%
mpy floating S% 3%
indirection 4% 2%
go to (uncond1t1onal) 3% ek
format edit 2% 1%
radix convert 2% 1%
SPL
move 15% 18% 14%
goto 8% 10% 1%

call 5% 1% 4%

compare&branch 9% 12% 8%
bittest&branch 5% 6% 4%
arithmetic 3% 5% 3%

MODULE ORIENTED FUNCTIONS

We can abstract from these language-oriented operations to module=
oriented functions producing the follow1ng breakdown of what JP modules
must be able to do well to produce competitive machines:

PARSE
Deliver cannonical operand specifiers to FETCH at the rate of
one per cycle, Note that this is not possible for SPL, COBOL
and PL/I when operand lengths are specified by structured
literals, This argues for longer fixed length literals for
Cobol anmd PL/I.

Completely process unconditional jumps invisibly to other units,

Prefetch both targets of a cond1twona] branch waiting for the
condition to be resolved only to decide which to process.

The parse’s relation to exception handling:

external interrupts,
s.0p dependent faults,
machine checks

is yet to be specified (TBS).

FETCH
Accept cannonical operand specification, generate and pass to
cache AQQ and fetch length, modify remaining length and address
and specify its own next nano instruction address in | cycle.
Where fetch length is:
the minimum of JPD=bus width and (remainming) operand length.

When the amount of data to be fetched 1s less than one JPD=width
specify Justlfwcat1on, extension and fill characteristics,

For multiple JPD=width operand fetches, if the length is not yet
exhausted and the condition, if any, is not yet detemined by the
execute box, send ACD and length to cache,,modjfy length and
address and specify own next nano 1nstruct1on in one cycle.
Specify Justificaion, extension, and fill for short lenmgths.

Handle compiler detected or user specified array operations,
to fetch and store elements of vectors that are being opeated
on as aggregates rather than single elements,

Abort mu1t1-JPDB-w1dth fetches when execute has already
determined result of comparison,

Handle over!apping str%ngs when compilers cannot or do not
handle them.

Exception handling TBS.
INTERFRETER

Extract and insert arbwtrary fields in arb%trary length
operands,

EXECUTE

Access known structures through physical addresses.
Generate memory addresses to chase linked data structures,

Generate own next nano address based on extracted fields and
several staticised bits==perhaps 16 to 64 way CASES.

Exception handling TBS,

Packed decimal arithmetic and comparisons including digit
validity,

Display comparisons including weird sign conventions.,

Packing, unpacking and editing including digit validity checks.
Overflow on 32 bit stores, and 64 bit calculations.,

Binary comparisons signed and unsigned.

Conversion from binary to decimal radices.

Floating point arithmetic.

Fixed point arithmetic,

Exception handling TBS,

APPENDIX I: SPL OPERATIONS AND OPERANDS

OBJECTIVE . .
- Te charactervze system programm1ng fundamental operations the
efficient execution of which is essential to SPL program performance.

OBSERVATIGNS

Burroughs uses a very PL/N like language called SDL as the
implementation language for the B1700/1800 systems., Though SFL 1is
different from both these languages the problems it will be called on to
solve are similar, It can be expected that SPL programs will use many
more strange=length variables than SDL, and more SUbscript1ng.
Additionally, the S_ languages are ph1losophically quite different
between SPL and SDL. This study of DYNAMIC execut1on characteristics of
the B1700 MCP can only characterise the kinds of source language
operations that systems programming languages specafy--not the details
of the actual s_ops that SPL will execute, Two dynamvc traces of
approximate1y 4,000,000 s=ops each (obtained by tracung the 1700 MCP)
agree quite well in their frequencies. One study is mult\programmwng a
number of jobs in ample memory with memory management activity
essentially limited to changes in their working sets. The second is
thrashing in less memory with the MCP spending a substantial proportion
(11%) of 1ts time executing the s=op that searches through memory
looking for available space.,

% of operatijons executed when

Operation mot thrashing thrashing
move 1i0.6 11.3
arithmetic 4,23 4,83
not 2.00 1.80
add ‘ 1.15 1.44
sub .84 1.23
comparison 4,69 5.04
eq] 2.58 3.00
neq 1.32 1.14
atr 48 53
boolean 1,20 1.38
program cntrl 18,22 17.22
conditional 7.07 6.80
ifthen 4,25 4,47
ifelse 1.61 1.27 L
leavec 1.21 1.06 conditionally leave block
unconditional 11,15 10.42
Ca]] 4:93 3-72 .
leave 2.46 3.00 uncondtionally leave
return 1,50 1.47 function value return
cycle lole .82 next iteration
exit 71 .92 procedure return
case .43 .49
construct <8§,00 <8,00

parameter and local variable packets
(S.language architectural overhead caused by processvng
env1ronment o)

load address <50,00 <50,00 but not much <
or value on stack (S_langugage overheads..)

Like SPL SDL allows the specificaion of variable length integers
and bit strings as well as character strings, For data that are NOT
incuded in structures (records) this facility is little used in SDL
partly because it is fewer keystrokes to specify a full 24 bit integer
and partly because there is no space saving in specifying stack= frame
bariables of less than 24 bits rather than one of 24 bits, Whether it
is used in SPL I suspect will be more a matter of management than of
technology, if it is as easy to specify the exact interval of a variable
rather than some standard or default interval then that will be done.
In 1,556,823 references to variables not in structures (implying
approximately 2,500,000 references to variables in structures) in the
1700 MCP’s dynamic trace, the distribution of lengths with non=zero
frequencies is:

bit reference reference
length frequency %

1 76,385 5

2 798 -

3 3,766 -

4 SSBQ\ -

5 268 -

6 627 - o

—7 2e,629 1 size of i/0 chennel field

8 2,079 = not including | char strings
i2 1,588 -

16 597 -
20 v 285
24unsigned 1,323,42% 85 these are the two lengths that
2dsigned 124,025 Bcan be specified without thougt

wPL will much more strongly encourage the declaration and use of strange
midth non=structured variables than SDL does, thus, making the numbers
in this tabie only representative of languages that allow this facility,
not at all typical of the lengths we will actually encounter in SPL,
References to varjables in structures will ‘always’ be to ’‘strange’
lengths.

~ To the extent that SPL programs are similar to the B1700 MCP,
they will exhibit the following characteristics:?

28% stores \
30% unconditional transfers of control
12.5% call ‘
30% conditional branch1ng 40% conditions true
20% requiring comparison
~ 10% bit testing only
8% arithmetic

To the extent that SPL has explict semanticaly rich operations for
functions that must be composed out of SDL s=opss these % will be
reduced==particularly the program control ones.

APPENDIX IIt CORE.FORTRAN

ABSTRACT:
A study of Fortran performance is undertaken by analyz1ng
recent publications, resulting in a dynamic mix of Fortran primitives.,

This memo is an attempt to identify the "core"
operatxons which must be executed efficiently by or machine to insure
compet1t1ve“Fortran performance._ The numbers in this report were

deciphered from various inputs including: ,
1) @ large static and a smal]l dynamic analysis of
Fortran programs done by Knuth at Stanford,
2) two static studies which Robinson and Torsu reported
in the British Computer Journal, and
) 3) a static and dynamic anmalysis of Algol performed by
Wichmann,

The algorithm used to combine these inputs and derive
the dynamic mix was roughly:
1. Determine the stat1c distribution of the 8 most
frequently occurring executeable statements.,

2. Using the dynamic study as a basis, infer a
dynamic distribution of statement occurrences,

3, Determine the types and distribution of primitive
operations that each statement could compile into.

4, Combining the results of 2 and 3, produce a dynamic
miXe

Each step in this procedure adds to the error already present
1n the 1nputs: resu1t1ng in an uncomfortably low ccnfwdence factor
in the f\nal conclus1ons. However, I believe this algorithm is the
best technique evaxlab!e to produce these results; when new data
and more 1nformed intuition are obtained, further iJteratijons
of this algorithm should converge on a "correct" mix. In order
to jdentify the areas where errors could be introduced, each assump=
tion that was made 1s recorded; any refvnements or second _opinions
would be very useful in producing a better iteration of this mix.

STATIC DISTRUBUTIONS

The static frequency of occurence of the 8 most commmon executeable
statements occuring in the sample programs are enumerated in the
following table, These numbers are normalized to reflect true _
percentages of executable statements, j.e. those statements which only
affect compilation are removed (e .g. CONTINUE, DIMENSION, END, etc.).
Each study provides data on two sample sets:

Knuth presents results of a huge sample of programs written at Lockheed
Corp.r as well as a much smaller set written by students at Stanford.

The British Computer Journal article (B CJ) reports on a "system" and a
"student" sample,

It is interesting to note that the two "commercial" (i.e. Knuth’s
Lockheed and BC J’s system) samples agree much better than the student
samples. This is somewhat reassuring since these samples will surely be

more similar to the typical Fortran programs)
written on our machine than the "toys" (as John Pilat calls them)
written by the students.

Consequently, when computing the average percentage of each
Etaement, the commecial saples were weighted 3:1 over the student
samples, Logical IF’sy i.e. {IF (.cond_expr,) "statement are treated
as two statements, one IF and one "statement",

KNUTH BCJ WEIGHTED
LOCKHEED STUDENT SYSTEM STUDENT AVERAGE
Assignment 46.0 60.1 48,1 50.3 49,1
IF 16,3 10.0 16,7 11.2 15.0
GOTO 14.6 9.4 i3.1 12.6 13.1
DO 4.5 5.9 5.2 7.8 5.4
CALL 9.0 4.7 4,3 4.0 6.1
RETURN 2.2 2.4 2.0 2.8 2.2
WRITE 4.5 5.9 8.5 7.9 6.6
READ 3 1.2 1.3 2.3 1.0

DYNAMIC DISTRIBUTIONS

The only explicit dynam1c information available results
from tests performed by Knuth on his student "toys". Other tidb1ts
o f information can be inferred from various data, but more reliable
numbers cannot be assembled without more inputs. Knuth’s dynamic
dats is summarvzed in the following table; also depicted is an attempt
to oetermine a more accurate dynamic mix by assuming that the
dynamic/static ratio is 1nvar1ant, therefore allowing a normalijzed
dynamic average to be computed from the statwc averages. It is
important to note that these dynmamic distributions are not weighted,

by estimated execution times, Such a transformation would defeat the

purpose of this exercise, which is to determvne whvch operations provide
more "leverage", j.e. to determine which operations, when accelerated:

contribute most to an overall increase in Fortran performance.

Knuth Knuth dyn/ ave. normalized
Statement Static Dynamic static Static computed
Dyn
Assignment 60.1 64,4 1.1 49,1 56.6
IF 10.0 10,5 1.1 15.0 17.3
GOTQ 9.4 8,6 .9 13.1 12.4
Do 5.9 9.6 1.6 5.4 9.0
* CALL 4,7 2.9 o7 6.l 3.2
* RETURN 2;4 2.9 1.3 2.2 -
WRITE 5.9 1.0 .2 6.6 1.3
READ 1.2 0.0 0.0 1. 0 0.0

* Of course, the dynemic frequencies of CALL & RETURN must be
equal, therefore, in computing the norma}azed computed dynamic
frequency they were combined as a single dynamic statement

whose frequency is assumed to be the average of the two results
of multiplying the static frequencies by their dynamic/static
ratios. The other frequencies were adjusted to reflect this
merger,

BTATEMENT BREAKDOWNS

In this sect1on each of the e1ght statements are analyzed
in detail to determine a plausable mix of primitive operations that
each statement could compile into. Archttectural overhead loads and
stores are assumed to be nonexistent since the S=ops executing these
common statements will surely be semantically rich,

ASSIGNMENT

A1l the studies provide information about the relative occurence
of operators within asswgnment statements, from which the following
distribution of operators is derived (note: add includes sub):

add 60%
mpy cb%
djv 8%
library functs 4%
user functs 2%

The problem then reduces to determining the average number
of operators per assignment statement, The answer was obtained
by making two approximations:

1) 45% of all dynamic occurences of assignments are moves and
2) in the remaining 55%, there is an average of 2 operators per

expression, This results in the conclusion that the
average assignment statement is executed as?

move 45
add 066
mpy 29
dlv .09
11brary functions «04
user functions .02

The next pr1m1t1ve operations resulting from
assagnment statements are index manjipulations, The first bit of
information necessary is the following distribution of subscrwpts among
variables:

0 637%
1 25%
2 10%
>2 2%

AsSUM1ng reasonble compiler optamwzat1on we can, perhaps a
little optimistically, assume that all swngly-subscr1pted variables
kequ1re no index arathmet1c; all doubly=subscripted var1ables require an
index add, and all variables with more than 2 subscn1pts require and
index multwp?y and an index add, This, together with an assumed average
of 2.5 variables per assignment, result in the conclusion that the
average assignment statement will recguire ,30 index adds and .05 index

mpylsv

Variables that are arguments to or results from a called
function are referenced 1nc1rectly: this overhead should also be
computed. However, since these indirect references occur whenever a
CALL occurs, this analysis is postponed unti] the section on CALL.

IF

The two classes of IF statements,‘arithmet1c and logical, must
be analyzed seperately. Logical IF’S, which comprise approximately
70% of al) IF’s, are straightforward; each comp11e into a simple
compare8branch operation. Arithmetic IF’s, however, contain an
arithmetic expression as well as three possible branch addresses,

The three address question was resolved by assuming that 10% of all
arithmetic IF's (3% of all IF’s) specify three different address and
therefore require an additional comparel&branch. The expressions within
an ar1thmet1c IF were assumed to be comparable to those in assignments.
A1l this results in the following conclusions about the average IF:

1.03 compare&branch
.20 add

.08 index add

.08 mpy

003 d'iV

.02 index mpy

.01 library function,

DO

The DO statement is executed twice, once for loop setup and
aga1n for loop iteration., The average loop was assumed to be executed
10 times, requ1r1ng the loop setup operation frequencwes to be
attenuated by & factor of ten. DO loop iteration requires an index add
and an index comp&branch., Although there is a difference between an
index comp&branch and the IF comp8branch, (the loop count is incremented
as a8 swde effect) they are s1m11ar enough to be treated as the same
primitive operation in the mix. The complex1ty of the DO loop setup
depends on whether the Joop increment is the default of one (95%) or
some specified value (5%). If the increment is one, the loop count can
be determined by a simple subtraction, the entire loop setup is a move
and an index add(sub)., If, on the other hand, the increment is not one,
an additional index add and index divide is necessary to compute the
count., This results in the average DU statement being executed as:

1.1 index add

i.0 compare8branch
«1 move

.005 index divide

GO TO

The GOTO is the simplest of the statements, Except for the
totally non=occuring assugned GOTO(0%) and the very infrequent computed
GOTO(1%), the GOTO maps directly into a branch., In fact, since 50% of
8l] GOTO’s occur in logical IF’s, they compile into a cond1tmona] branch
w«hich has already been counted in the IF analysis. Therefore the
average GOTO statement is executed as:

L,49=goto(unconditional);
.01 compted go to.

CALL/RETURN

) The CALL/RETURN pair is straightforward to analyze. It expands
ﬁnto a state save, a state restore, and two unconditional branches.

n additjon, arguments and resylts are passed using pointers in

the stack. Therefore the overhead of indirect references are associated
with CALL/RETURN., The assumption was made that there, are on the
average, 5 indirect references per CALL. Therefore the average
CALL/RETURN pair is executed as:

l=-state savej}

l=state restore;
2=unconditional go toj
S=indirections,

WRITE

Although WRITE occurs roughly 1% of the time, it has been observed that
it actually consumes 25=50% of execution time., This is caused by two
factors:

1) The WRITE statement could contain an "implied DO" or a list
of variables to be written, therefore the average WRITE statement really
involves multiple WRITE’s. The assumption was made that the average
WRITE executes 7 times. There 1s a tremendous geviation here because an
instance of @ WRITE could specify a single variable or & 100Xx100 matrixe

) 2) the data to be written must be converted from binary to
decimal and edited according to a format specification, These
"primitive" operations are quite complex and time=consuming, causing the
kyrpical WRITE dynamic execution weight to be much higher than the other
statements., This is a fundamental problem with this type of analysis,
the fact that some operation occurs ,1% of the time is not enough
information to discount it; if it takes 1G0 times as long to execute as
another statement occuring 10% of the time it is of equal significance.>

Therefore the following mix for write is computed:

7=format edit;

7=radix convert

7=-index add

7=compare&branch
l=interdomain call to write,

READ
Since READ occurs very infrequently it is not handled in detail

also it is very similar to WRITE, and acceleration of formatting and
radix conversion should be bidirectional,

DYNAMIC MIX
This section contains the final results of this study; the

conclusions of sections 283 are combined to produce a SWAG Fortran mix,

STATEMENT SUMMARY , ,
Stetement dynamic weight primitive op freq., weighted freq

Assignment «57 add 66 « 38
move .45 .26
ndx add 30 17
mpy .29 .16
div .09 .05
ndx mpy W05 .03
1ibefun, .04 .02
user_fun. .02 01
IF 17 comp&branch 1,03 18
add .20 .03
ndx ada .08 .01
mul .08 .01
div .03 .00
ndx mul .02 W00
libafun, .01 .00
GOTO 12 goto(uncond.) .49 .06
case .01 .00
]} .09 ndx add 1.1 10
comp8branch 1.0 .09
move ol .01
CALL/RETURN .03 state save 1.0 .03
state restore 1,0 203
goto(uncond.) 2.0 W06
indirection 5.0 15

WRITE .01 format edit 7.0 .07
radix conva 7.0 W07
ndx add 7.0 .07
compi&branch 7.0 .07
I1/0 directive 1,0 .01

DYNAMIC MIX

primitive weighted freg, normalized freq.
add 41 .20
ndx add 35 17
comp&branch .34 .16
move 27 .13
mul 17 .08
indirection .15 .07
goto(uncond.) .12 .06
format edit .07 .03
radix conv, 07 .03
div .05 .02
ndx mul «03 .01
lib., fun, .02 .01
user fun, .01 <,01
170 directive .01 <,01

case <,01 <<,01

APPENDIX III: CRUCIAL COBOL OPERATIONS
STU?Y Z A STATIC AND DYNAMIC STUDY OF COBOL SOURCE ELEMENT FREGQUENCIES
~This study shows static and dynamic occurrence of Cobol verbs and their

pperands for 9,000,000 Cobol verb executions of a 15000 verb program,
According to this study the dynamic distribution of verbs is:

static dynamic ratio d:is verb
2é 4.7 1.7 IF
33 25.6 75 MOVE]
20 12.0 .6 GO0 TO (conditional and unrconditional)
4,8 9.5 2 ADD
55 Y- 4 MPY
57 2.1 4 SuB
6.5 1.5 .22 PERFORM
.26 o4 1.5 DIV

The strong disparity of static and dynamic frequencies and the
1nterchange of the lst and 2nd most frequent verbs confirms my
prejudices agaimst static studies.

The dynmamic distribution of operands by verb (as % of all verb
executions and as % of all executions of this verb) is

(where bin is subscript, exd is display, pck is packed, liimli’liﬁgggl):

verb % of all % of verb

ADD bins, bin 66 7.0 bin probably is a local
exd, exd 2.9 30.6 equivalent of pck and
exd, pck .38 4,1 will be so considered.
ity bin 3.1 33,1 if bin is really the
lit, exd l.22 12.8 equivalent of index
ity pck .l 1.1 rather than packed
exd, pcky bin 67 7.1 or sometimes one or the
1ite pcks bin .16 1.7 other we are mislied,

if bin is assumed to be pck these percentages change to become
pgkl PCK .7 7-“
]"tl ka 3.2 3“.2

Four accelerated S=ops:
add display to display 2
increment packed by literal 3
increment display by literal 1
add packed to packed . ;
would account for 7% of all executed Cobol instructions,

~N N O

DIV exd, exd, exd .05 12.9
exd, 1it, exd .04 10.9
pck, exd, pck .21 54.4
]itl eXdl eXd -85 21-8
IF Xy X 3,0 7.om
Xy Tit 11.3 26.5
exd, exd .4 1.1
exdp]it . 50“ 12-7
X X bin 1.7 4.1
X bin, 114t 1.2 2.8

X

ity
exd,
1it,

Four accelerated compare

X
X
Tit,
X

XI X 1.6
X x 1.5
X X W47
1ity x 2.3

U1 = W

Ul Ul @

compare display to display,
compare display to litera
compare packed to literal,
compare display numeric to literal
would account for 30% of all

MOVE Xy
exdy
exd'
1it,
Tit,
Tit,
Xy
X
exd,
X
X

X
exd
X

x a
bin
exd
X
bin,
rpty
Xy
bin,

6.8

8

1.2

2.0

i.6

1.8

bin 1.8
.85
bin W12
bin, bjﬁ.Bl
X » bin3.1

Four accelerated s_ops:
move display to display,
move 1it to display,
move packed to packed)
move lit to display numeric,
would account for 16.6% cof all dynmem

1

and branch instructions:

6.3
12.8
6.0
S.4

dgynamically executed Cobol verbs,

LV
N NVWNNO e W

—

ONIBWWONNO UNNIO W

- NN O

O s o = »

O 0O O

-

11y executed Cobol

verbs,

APPENDIX IV: COBOL ACCELERATORS

OBJECTIVE)
To determine what if any components should be added to FHP
hardwere to improve the performance of Cobol programs.,

BACKGROUND

There is a possibility of providing operat1on acceleration
features on FHP systems that can enhance their execution of Cobol
programs. To decide what operations to accelerate we would like to know
the relative frequencies of Cobol verbs and data types. Unfortunately
there is a dearth of relvable 1nformat1on on this topic and we are
reduced to applying liberal doses of intuition to what studies are
available,

There are 3 DYNAMIC studies which address this question:
360/85 design study
360 instruction frequency study
STUDY 2 dynam1c/stat1c Cobol verb study.
The flrst two were done to characterize current 360 \nstruction
execution frequencies, the last to study actual Cobol dynemics.

One static study of 360 code generated by the DGCS ANSI compiler
for a DGC application program provwded some surpr1ses. Two other static
studies are most noteworthy for their d1screpancy wwth dynamic data:

Guelph University study of university administrative
programs
STUDY Z static Cobol verb study.

In STUDY Z the 6 dynamically most freauently occurring Cobol
verbs, their static frequencies, the ratio of dynamic to static
freqguencies and comparison with IBM dynamic and guelph static
freguencies are:

verb 4dyn %“stat dynZ/statl
Z 1BM z Guelph

IF 43 12.5 26 14=30 1.65

MOVE 26 35 33 30=40 .79

GOTO 12 33 20 14=30 « 60

ADD 9.5 4,5 4.9 2=3 1.9

MPY 2.2 .55 4

SuB 2.1 «57 3.7

The last column 1nd1cates that the dynam1c frequency of operations is
typically from twlce to 1/2 their static freguency and, therefore,
that the ratio of two dynamic frequencies is from 4 times to 1/4 that
of the ratio of their static frequencies,

In the IBM studies the Cobol verbs have disappeared in the 360
opcodes, At first we felt that we could isolate the "architectural
overhead" instructions from the "substantive" ones, Examwnatson of the
code generated by the DOS ANSI compiler shakes that belvef. We had
guessed 30% to 40% overhead. In fact each Cobol verp is compiled into a
STATIC average of 3 360 instructions, Unless the dynamically most
frequent instructions compile into substantially fewer instructions than
average we are faced with perhaps 50% to 60% overhead. (Interestingly
one dynamic study shows that 7 of the most obviously substantive
instructions dynamically account for 40% of all instructions. I was too
shy to guess that this was in fact all the substantive instructions and
that 60% rather than 30% were overhead. Unfortunate%y trying to induce
the Cobol verbs wh1ch correspond to these substantive operations
produces the very different dymamic frequencies in the above table.)

OBSERVATIONS

Despite these confusions there are some underlying simularities
among all these most frequent substantive Cobol verbs:

1. They address 2 streams of data being read from memory and
compare them IF ‘ '

2. They address 2 streams of datar | being read and 1 being
written, perhaps after & "trivial" transformation MOVE

3. They address 2 streams of data being read from memory and
"combine" them to produce a 3rd stream to be written
to memory ADD SUB etc

GOAL »
~ The goal of Cobol accelerators should be to allow these kinds of
operations to proceed at memory=cache=JPDbus bandwidth,

REGUIREMENTS ;)
To meet this goal we may need special purpose accelerators in
the following areas:

1 fetch can send | address to cache each cycle
2 cache can send 1 JPDbus width of data each cycle

3 execute can

compare

pack

unpack

add, subtract
one JPDbus width of data each cycle, IBM checks all such
operations for valid data and optionally aborts on invalid
data, To be comparable to IBM in this matter and meet our
performance goals we may have to add special purpose checks.

4 The Cobol standard defines several bizarre data formats that
we must support., To0 do so in a reasonable fashion may require
special decode ROMs for ASCII and EBCDIC separate and
overpunch signs,

Note that accelerators for functions 1 and 2 will also accelerate the
operatijon of Fortran and SPL programs and of kernel functions like LAT.

SUMMARY h]

FHP hardware believes that this goal and these requirements to
meet this goal are worth investment in special purpose hardware and will
add such hardware as appears to be feasible to FHP systems, either in
all systems or as special optional Cobol accelerator packages. FHP_
hardware solicits FHP software support, comment or correction of this
position,

