
$ $
$S S$
$ $ $
S $ $
$ $
S S
$ $

S$S
$ $
$ $
$ $
$ $
$ $

$$S

$SSS
$ $
S :6
SS
S
$
$

USER=OP QUEUE=LPT DEVICE=@LPAl
SEG=16 QPRI=127 LPP=63 CPL=80 COPIES=l LIMIT=Ql

SSS$S S S
S $S $$ S
5 $ S S $
SSSS $ $ $ $
5 5 5 $
S S 5 S
SSSSS S S

CREATED:
ENQUEUED:
PRINTING:

30-MAR-77
lQ-JUN-77
lQ-JUN-77

9:Q8:26
13:07:Q6
13:07:48

PATH=:MEMO:MEMOS196.LS

SSS $ S sss SSS
S SS SS $ $ $
$ $ $ S 5 5 S $
S SSS S SSSS SSS$
$ $ $ S S $ S
S S5SS S S S $

SSS $ SSSSS SS SSS
S$
SS

S SSS
S $ S
$ $
S SS5
$ $
$ $ S
SSSSS SSS

+QQ444Q44Q4QQQQQQQQQQQQQQQQQQQQQQQ4Q4QQQQQQQQQQQQQQQ4QQ4QQ4QQQQ4Q44Q44QQQ44QQQQ+

AOS XLPT REV 01.00

To: J. Clancy, C. Mundie, S. Schleimer, W. Slack,
R. Belgard, J. Oooda, R. Gruner, S. Redfield, S. Wallach

From: J. Ahlstrom, M. Oruke, W. Wallach

~EMO 196 MARCH 12, 1977

Subject: SUMMARY MIX AND FUNCTION BY MODULES FOR
CDBOl, FORTRAN, SPl, OSkernel

N6te: The ~ollow~ng mlx we~ghts are totally SWAG

MIX SUMMARY ._- -------
COMMERCIAL INSTAlLATIO~S

The. standard mix for commerc~al ~nstallations ~s guessed to be:

70% Cobol
30% Spl

NUMERICAL INSTALLATIONS

object programs
compilers, data base, debuggers, OS

The standard mix for numer~cal ~nstallat~ons ~s guessed to be:

bOX Fortran
40% Spl

MIXED INSTALLATIONS

object programs
comp11ers, OS, debuggers, ed~tors

Much more variability in mix can be expected from mixed
installations than ~rom exclus~vely c6mmerclal or numerical ones. Th~s
m~x ~s presented for a mythical "perfectly balanced" m~xed ~nstallat~~n:

33% Cobol
33% Fortran
34% Spl

CONTRIBUTIONS TO PERFORMAN~E BY OPERATION BY LANGUAGE

COBOL
addpacked
c:mprpacked
cmprdisplay
movechars
adddisplay
mpypac:ked

C.OMMERC I AL

4%
7%

30%
20%

4%
2%

FORTRAN

SPl

add floating
index add
c:mpr&branCh

incl do update
move
mpy floating
indirection
~o to (u~~onditlonal)
format edit
radix convert

move
goto
call

15%
8%
5%

NUMERICAL

11%
11%
10%

7%
5%
4%
3%
2%
2%

18%
10%

7%

MIXED

2%
3%

15%
10%

2%
1%

6%
0%
5%

3%
3%
2%
2%
1%
1%

14%
7%
4%

compare&branch 9%
b~ttest&branch 5%
arithmetic 3%

12%
b%
5%

8%
4%
3%

~ODULE ORIENTED FUNCTIONS --_.-- --_.---- ---------
We can abstract from these language-oriented operations to module­
or~ented functions produc~ng the ~0110w~n9 breakdow~ of what JP modules
must be able to do well to produce competitive maChines:

PARSf

FETCH

Deliver cannon~cal operand spec~i~ers to FETCH at the rate o~
one per cycle. Note that this is not possible for SPL, COBOL
and PL/I when operand lengths are spec~iied by structured
literals. This argues for longer fixed length literals for
Cobol and PL/I.

Completely process uncond~tional Jumps ~nv~s1bly to other un~ts.

Prefetch both targets of a conditional branch waiting for the
condition to be resolved only to decide which to process.

The parse's relat~on to excePt~on handling:

external interrupts,
s_op dependent faults,
machine checks

is yet to be specified (TBS).

Accept cannonlcal operand spec~ticat1on! ~enerate and pass to
cache ADO and. fetch length, modify remaining length and address
and specii y its own next nano ~nstruct~on address ~n 1 cycle.
Where fetch length is:

the minimum of JPD-bus width and (remaining) operand length.

When the amount of data to be fetched ~s less than one JPD-w~dth
specify Justification, extension and fill characteristics.

For mult~ple JPD·w~dth operand fetches, ~i the length is not yet
exhausted and the condlt~on, ~f any, ~s not yet detem~ned by the
execute box, send AOO and length to cache, mod~iy length and
address and specify own next nano ~nstruct~on ~n one cycle.
Specify Just~fica~on, extenslon, and i~11 for short lengths.

Handle comp~ler detected or user spec~i~ed array operat~ons,
to fetch and store elements of veetors that are being opeated
on as aggregates rather than s~ngle elements.

Abort mult~-JPDB-width fetches when execute has already
determined result oi comparison.

Handle overlapp~ng strings when comp~lers Cannot or do not
handle them.

E~eePt~on handl~ng T6S.

INTERPRETER
Extract and ~n$ert arbitrary i~elds 1n arb~trary length
operands.

EXECUTE

Access known structures through phys~cal addresses.

Generate memory addresses to chase l~nked data structures.

Generate own next nano address based on extracted f~elds and
several stat~c~sed bits--perhaps 16 to 64 way CASES.

Except~on handling TBS.

Packed decimal ar~thmetic and comparisons ~ncluding digit
validity.

D~splay comparisons includ~ng weird s~gn conventions.

Packing, unpacking and editing including digit validity checks.

Overflow on 32 bit stores, and 64 bit calculations.

Binary compar~sons signed and uns~gned.

Conversion ~rom binary to dec~mal radices.

Floating po~nt ar~thmetic.

Fixed point arithmetic.

ExcePtion handl~ng 16S.

APPENDIX I: SPL DPERATIONS AND OPERANDS

OBJECTIVE
To characterize system programming fundamental operations the

~ff~cient execut~on o~ wh~ch ~s essent~al to SPL program performance.

OBSERVATIONS
Burroughs uses avery PL/N like language called SDL as the

~~plementation language for the B1700/1800 system,. T~ough SPL is
different from both these languages the problems ;t w;ll be called on to
solve are similar. It can be expected that SPL programs will use many
more strange-length variables than SOL, and more subscriPting.
Additionally, the S_lan~uages areph~losoph~cally.qu~te d~fferent. .
between SPL and SOL. Th;s study of DYNAMIC execution characteristics of
the B1700 MCP can only characterise the kinds of source language .
operat~ons that systems programm~ng languages spec~iy--not the details
of the actual s_ops that SPL will execute. Two dynamic traces of
approximately 4,000,000 s-ops each (obtained by tracing the 1700 MCP)
agree quite well in their frequencies. One study is multiprogramming a
number of jobs in ample memory with memory management activity
essent~ally l;m~ted to cha~ges ~n thelr work~ng sets. The second is.
thrashing ;n less memory with the MCP spending a substantial proportion
(llX) of ~ts time executing the s-op that searches through memory
looking for available space.

X of operations executed when
not thrashing thrashing Operation

move

arithmetic
not
add
sub

comparison
eql
neq
gtr

boolean

program cntrl
. conditional

i ft hen
iielse
leavec

unconditional
call
leave
return
cycle
exit
case

10.b

4.23
2.00
1.15

.84

4.b9
2.58
1.32

.48

1.20

18.22
7.07
4.25
1.bl
1.21

11.15
4.93
2.46
1.50
1.12

.71

.43

11.3

4.83
1.80
1.44
1.23

5.04
3.00
1.14

.53

1.38

17.22
b.80
4.47
1.27
1.0b cond~t~onally leave block

10.42
3.72
3.00 uncondtionally leave
1.47 function value return

.82 next iterat~on

.q2 procedure return

.49

construct <8.00 . <8.00
parameter and local variable packets
(S_language architectural overhead caused by processing
environment.)

load address <50.00 <50.00 but not much <
or value on stack (S_langugage overhead •••)

Like SPL SOL allows the specificaion of variable length integers
and bit strings as well as character strings. For data that are NOT
~ncuoed ~n structures (records) this facility is little used ~n SDL
partly because ~t is fewer keystrokes to specify a full 24 bit integer
and partly because there is no space saving ~n spec~iy~ng stack-frame
~ariab'e~ of less than 24 bits rather than one of 24 bits. Whether~t
;s used in SPL I suspect will be more a matter of management than of
technology, if ~t ~s as easy to specify the exact ~nterval of a variable
rather than some standard or default ~nterval then that will be done.
In 1,556,823 references to variables not in structures (implying
approximately 2,500,000 references to var~ables in structures) in the
1700 MCP~s dynamic trace, the distr~bution of lengths w~th non-zero
frequencies is:

bit
length

1
2
3
4
5
6

.------:t;7 7
8

12
16
20
24unsigned
24signed

reference
frequency
7b,3.85~

798 "\
3, 76b,

353
268
b27

22,629
2,079
1,588

597
285

1,323,423
124,025

reference
%
5
•

-
1 size of i/o channel field
- not including 1 char strings

85 these are the two lengths that
8can be specified without thougt

~P.L wi.', much more stroni'Y encourage the declarat~~n a~d use of strange
'idth non-structured variables than.SDL does, thus, making the numberS
in this table only representative of languages that allow this fac~lity,
not at all typical of the lengths we will actually encounter in SPL.
References to variables in structures will ~always~ be to ~strange~
lengths.

To the extent that SPL programs are.slmtlar to the 81700 MCP,
they w~11 exhib~t the following character~st~cs:

28% stores
30% unconditional transfers of control

12.5% call
30% condit~onal branch~ng "0% cono~tions true

20% requiring comparison
10% oit testing only

8% arithmetic

To the extent that SPL has explict semanticaly rich operations for
functions that must be composed out of SDL s-ops, these % w~l 1 be
reduced--particularly the program control ones.

APPENDIX II: CORE_FORTRAN

ABSTRACT:
A $~udy.o~ Fortran perf9rmance ~s_und,rtaken by analyz~ng

recent publications, resulting in a dynamic mix of Fortran primitives.

Th~s memo ~s an attempt to ~dent~fy the "core"
operations which must be executed efficiently by or machine to insure
competitive Fortran performance. The numbers in this report were

dec~phered from various ~nputs ~nclud~ng:
1) a large stat~c and a small dynamic analys~s of

Fortran programs done by Knuth at Stanford,
2) two static stud~es wh~ch Robinson and Torsu reported

~n the Br~t~sh Computer Journal, and

W~chmann.
3) a static and dynamic analysis of Algol performed by

The algor~thm used to combine these inputs and der~ve
the dynam~c mix was roughly:

1. Determ~ne the static d~stribut~on o~ the e most
frequently occurring executeable statements.

2. Us~n9 th, dy~ami~ stu~y as a bas~s, infer a
dynamic distribution of statement occurrences.

3. Determ~ne the types and d~stributlon of pr~m~tive
operations that each statement could compile into.

4. Combining the results of 2 and 3, produce a dynamic
m~x.

Each step ~n th~s procedure adds to the error already present
~n the ~nputs, resulting ~n an uncomfortably loweonildence faetor
1n the final conclus~ons. However, I bel~eve this algor~thm ~s the
best technique available to produce these results; when new data
and more ~nformed ~ntultion are obta~ned, further lterat~ons
of th~s algortthm should converge on a "correct" ml~. In order
to ident~iy the areas where errors could be introduced, each assump­
tion that was made is recorded; any refinements or second opinions
would be very useful ~n produ~~ng a better ~teration of this m~x.

STATIC DISTRUBUTIONS

The stat~c frequency of occurence of the 8 most commmon executeable
statements occur~ng in the sample prog~ams are enumerated ~n the
~011ow~ng table. These numbers are normal~zed to reflect true
percentages of executable statements, ~.e. those statements wh~eh only
afiect compllat~on are removed (e .g. CONTINUE, DIMENSION, END, etc.).
Each study provides data on two sample sets:

Knuth presents results of a huge sample oi programs wrltten at Lqckheed
Corp., as well as a much smaller set written by students at Stanford.

~he Brlt~sh Computer Journal article (6 CJ) reports on a "system" and a
"student" sample.

It ~s ~nterest~ng to note that the two "commerc~al" (~.e. Knuth's
Lockheed andBC J's system) samples agree much better than the 'student
samples. This is somewhat reassur~n9 s~nce these samples wll1 surely be

more similar to the typical Fortran programs
wr~tten on our machine than the "toys" (as John P~lat calls them)
wrltten by the students.

Consequently, when computing the average percentage of each
Itaement, the commecial saples were weighted 3:1 over the student
samples. Logical IF's, ~.e. {IF (.eond_expr.) "statement are treated
as two statements, one IF and one "statement".

DYNAMIC

KNUTH

LOCKHEED STUDENT

BCJ

SYSTEM STUDENT

WEIGHTED

AVERAGE
--

Assignment 46.0 60.1 48.1 50.3 49.1
IF 16.3 10.0 16.7 11.2 15.0
GOTO 14.6 9.4 13.1 12.6 13.1
DO 4.5 5.9 5.2 7.8 5.4
CALL 9.0 4.7 4.3 4.0 6.1
RETURN 2.2 2.4 2.0 2.8 2.2
WRITE 4.5 5.9 8.5 7.9 6.6
READ .3 1.2 1.3 2.3 1.0

DISTRIBUTIONS

The onlY expl~cit dynamlc ~nformati6n ava~lable results
ir6m tests performed by Knuth on h~s student "tOYs". Other t~db~ts
pf informat~on can be ~nferre~ irom var~o~s data, but more rel~~ble
numbers cannot be assembled without more inputs. Knuth's dynamic
data is summarlzed ~n the fol low~ng table; also dep~cted is an attempt
to determ~ne a more accurate dynam~c m~x by assum~ng that the
dynamic/static ratio is invariant, theref6re allowing a normalized
dynamic average to be computed from the stat~c averages. It ~s
~mportant to note that these dynam~c d~str~but~6ns are not we~ghted.

by estimated execution times. Such a transf6rmation would defeat the
purpose 6+ this exerc~se, which is to determ~ne wh~ch operat~ons prov~de
more "leverage", l.e. to determ~ne wh~ch operat~ons, when accelerated,
contribute most to an overall increase in Fortran performance.

*
*

Knuth Knuth dynl ave. I"ormalized

Statement Static DYnamic static St ad c computed
Dyn

---._-----_._-------.---------------_.--------------_ .. -------
Assignment 60.1 64.4 1 • 1 49.1 56.6
IF 10.0 10.5 1 • 1 15.0 17.3
GOTO 9.4 8.6 .9 13.1 12.4
DO 5.9 9.6 1.6 5.4 9.0
CALL 4.7 2.9 .7 6.1 3.2

RETURN 2.4 2.9 1.3 2.2 -
WRITE S.9 1.0 .2 6.6 1.3
READ 1.2 0.0 0.0 1.0 0.0

* Of course, ... the dynamic fr~quencies. of C~LL & RETURN must b~
,qual, therefore, in computing the ~ormal;zed ~omputed dynamiC
frequency they were combined as a Single dynamic statement

whose frequency ~s assumed,to be the average of the two results
o~ mult~ply~ng the stat~c frequenc~es by the~r dyn8m~c/static
ratios. The other frequencies were adjusted to reflect this
merger.

hTATEMENT BREAKDOWNS

In this section each of the eight st~t~m~nts are a~alyzed
in detail to determine a plausable mix of primitive operations that
each statement could compile into. Architectural overhead loads and
stores are assumed to be nonexistent since the S-ops executing these
common statements will surely be semantically rich.

ASSIGNMENT

All the studies provide information about the relative occurence
of operators w~th~n assignment statements, from wh~ch the follow~ng
distribution of operators is derived (note: add includes sub):

add bOX
mpy 2bX
div 8%
library functs ~X
uSer functs 2%.

The problem then reduces to determin~ng the average number
of operators per assignment statement. The answer was obtained
by mak~ng two approximat~ons:

1) ~SX of all dynamic occurences of assignments are moves and

2) ~n the rema~ninQ 55%, there is an average of 2 operators per
expression. This results ~n the conclus~on that the
average assignment statement ~s executed as:

move .45
add .bb
mpy .29
div .09
library functions .O~
user functions .02

The next pr~m~tive 9~erat~ons resulting from
assignment statements are index manipulations. The first bit of
~n+ormat~on necessary is the follow~ng distribution 6i subscr~pts among
variables:

o 03%
1 25%
2 10%

>2 2%

_ As~umin9 reasonble comp~ler 6Ptl~izat~6n we pan, p.rh~ps a
little opti~isticalJY, as,ume that, all s;ngly-,ubsctipt~d variable,
~equire no index arithmetic, all doubly·subscripted vapiables require an
~ndex add, and atl var~ables w~th m6re than 2 subscriPts require and
index multiply and an index add. This, together with an assumed average
of 2.5 variables per assignment, result ~n the conclusi6n that the
average assignment statement wlll requlre .30 lndex adds and .05 ~ndex
mpy's,

Var~ables that are arguments to or results ~rom a called
~unction are referenced indirectly; this overhead snould also be
computed. However, since these indirect references occur whenever a
CALL occurs, th~s analysis ~s postp6ned unt~l the sect~on on CALL.

IF
The two classes 61 IF statements, arithmetic and logical, must

be analyzed seperately. Logical IF'S, which compr~se approx~mately
70% of all IF's, are straightforward; each compile into a simple
eompare&branch operation. Arithmetic IF's, h6wever, contain an .
arithmetic expression as well as three possible branch addresses.

The three address question was resolved by assuming that 10% of all
ar~thmetic IF's (3% of all IF's) spec~fy three different address and
therefore requ~re an additional compare&branch. The express~ons w~th~n
an ar~thmetic IF were assumea to be comparable to th6se ~n assignments.
All this results in the following conclusions about the average IF:

DO

1.03 Compare&brancn
.20 add
.08 index add
.08 mpy
.03 div
.02 index mpy .
• 01 1 ibrary function.

The DO ~tatem,nt is executed tw~ce, once for ,06p setup and
again for loop iteration. The average loop was assumed to be executed
10 times, requiring the loop setup operation frequencies to be
attenuated by a iactor of ten. DO loop ~terat~6n requ~res an ~ndex add
and an ~ndex comp&branch. Although there ~s a di'ierenee between an
~ndex comp&branch and the IF comp&branch, (the 100~ c6unt ~s ~ncremented
as as~de eifect) they are s~m~lar enough to be treated as the same
pr~m~t~ve 6perat~on ~n the m~x. The c6mplexity of the DO loop setup
depends on whether the loop increment ls the default 6i one (95%) or
some spee~f~ed value (5%). If the increment 1s one, the ,06p count can
be determined by a s~mple subtraet~on, the entlre 106p setup ~s a move
and an index addCsub). If, on the other hand, the ~ncrement ~s not one,
an addit~onal ~ndex add and ~nde~ d~vide 1s neceSSary to compute the
c6unt. This results in the average DO statement being executed as:

GO TO

1.1 index add
1.0 compare&branch

.1 move

.005 index divide

The GOTO ~s thes~mplest of the statements. E~cept ior the
totally non-occur~n9 ass~sned GOTQ(O%) and the very inirequent computed
GOTO(l%), the GOTO maps directly into a branch. In iact, since 50% 6i
~11 GOTO's occur ~n 10g~cal IF's, they comp~le ~nto a c6n~~t~6nal branch
~hlch has already been c6unted ~n the IF analys~s. Theref~re the
average GOTO statement is executed as:

.49-goto(unconditional);

.01 compted go to.

CALL/RETURN

The CALL/RETURN pair ;s straightforward to analyze. It expands
~nto a.s~ate save, a state restore, and two uncond~tlo~al branches.
In addition, arguments and results are passed using pointers in
the stack. There~ore the overhead o~ ~nd~rect re~erences are assoc~ated
with CALL/RETURN. The assumption was made that there, are on the
average,S indirect references per CALL. Therefore the average
CALL/RETURN pair is executed as:

WRITE

i-state save,
i-state restore;
2-uncondit;onal go to;
S-indirections.

Although WRITE occurs roughly 1% of the time, it has been observed that
it actuallY Consumes 25-50% of execut~on t~me. This ls caused by two
factors:

1) The WRITE statement could conta~n an "implied DO" or a list
of variables to be written, therefore the average WRITE statement really
involves multiple WRITE's. The assumpt~on was made that the average
WRITE executes 7 times. There is a tremendous deviation here because an
instance o~ a WRITE could spec~fY a single var~able or a 100X100 matr~x.

2) the data to bewr~tten must be converted from blnary to
dec~mal and ed~ted according to a format specification. These
"primitive" operations are quite complex and time-consuming, causing the
~ypica' WRITE dyna~ic execut~on weight t6 be.much ~igher th~n the o~her
statements. This is a fundamental problem with this type of analysis,
the fact that some operation occurs .1% of the time is not enough
~nformat~on to d~scount it; if it takes 100 t~mes as long to execute as
another statement occuring 10% of the tlme it ~s of equal s~gn~f~cance.>

Therefore the follow~ng m~x for wr~te 1s computed:

READ

7-for~at edit;
7-rad;x convert
7-~ndex add
7-compare&branch
l-~nterdoma~n call to write.

S~nce READ occurs very ~nfrequentlY 1t ~s not handled ~n deta~l
also it ;s very similar to WRITE, and acceleration of formatting and
rad~x conversion should be bidirectional.

DYNAMIC MIX

Th~s section conta~ns the i~nal results o~ th~s study; the
conclusions of sections 2&3 are combined to produce a SWAG Fortran mix.

STATEMENT SUMMARY
Statement dynamic weleht primit~ve OP fre~. we~ehted fre~

.-._-... -------------------------------.-------------- -~--------
Assignment .57 add .66 .38

move .45 .26
ndx add .30 .17
mpy .29 .16
d1v .09 .05
ndx mpy .05 .03
lib.fun. .04 .02
user_fun. .02 .01

IF .17 comp&branch 1.03 .18
add .20 .03
ndx add .08 .01
mul .08 .01
div .03 .00
ndx mul .02 .00
lib.iun. .01 .00

GOTO .12 goto(uncond.) .49 .06
case .01 .00

DO ndx add 1 • 1 .10
comp&branch 1.0 .09
move • 1 .01

CALLIRETURN .03 state save 1.0 .03
state restore 1 .0 .03
soto(unc~nd.) 2.0 .06
indirection 5.0 .15

WRITE .01 format edit 7.0 .07
rad'i)(cony. 7.0 .07
ndx add 7.0 .07
comp&~ranc~ 7.0 .07
1/0 directive 1.0 .01

primitive
DYNAMIC MIX

weighted freq. normal;zed freq.
------------_.-------------------------.------------------------

add .41 .20
nox add .35 .17
comp&branch .34 .1b
move .27 .13
mul .17 .08
; ndi rect; on .15 .07
goto(uncond.) .12 .Ob
format edit .07 .03
radix conv. .07 .03
div .05 .02
ndx mul .03 .01
1 i b. fun. .02 .01
user fun. .01 <.01
1/0 directive .01 <.01
case <.01 «.01

APPENDIX Ill: CRUCIAL COBOL OPERATIONS

STUDY Z A STATIC AND DYNAMIC STUDY OF COBOL SOURCE ELEMENT FREQUENCIES

Th~s study shows static and dynamic occurrence of Cobol verbs and the~r
~ pperands for 9,900,000 Cobolv~rb.exe~ut~ons 9f a 15000 verb program.

According to this study the dynamic distribution of verbs is:

static dynamic ratio d:s verb
.----- .------ ----- --- ----

26 42.7 1 • 7 IF
33 25.6 .75 M.OVE
20 12.0 .6 GO TO (conditional and unconditional)

4.8 9.S 2 ADD
.55 2.2 4 MPY
.57 2.1 4 SUB

6.S 1.5 .22 PERFORM
.26 .4 1 .5 DIV

The strong disparity of static and dynamic frequencies and the
interchange of the 1st and 2nd most frequent verbS confirms my
prejudices against static studies.

The dynam~c distr1but~on of operands by verb (as % of all verb
executions and as % of all executions of this verb) is
(where bin is subscr~pt, exd is display, pck is packed, lit is literal):

iij~ .. -........--.--- --------

verb
ADD bin, bin

exd, axd
exd, pck
pck, pck
lit, bin
lit, exd
lit, pck
exd, pck, bin
lit, pck, bin

% of all" of verb
- _. --- - -- .-.-

.66
2.9

• 38
.04

3.1
1.22

• 1
.67
.16

7.0
30.6

4. 1
.4

33.1
12.8

1 • 1
7.1
1 • 7

bin probably is a local
equivalent of pck and
wi11 be so considered •

if b~n 1s really the
equivalent of index
rather than packed
or sometimes one or the
other we are misled.

if bin is assumed to be pck these percentages change to become
pck, pek .7 7.4
lit, pek 3.2 34.2

Four accelerated S-ops:
add display to display 2.9
increment packed by literal 3.2
increment display by literal 1.2
add packed to packed .7

would account for 7% of all executed Cobol instructions.

DIV exd, exd, exd .05 12.9
exd, 1 it, exd .04 10.9
PC k, e)(d, pck .21 54.4
H t, exd, exd .85 21.8

IF x , x 3.0 7.0 display alphanumeric
x, lit 11.3 26.5
bi n, lit 6.0 14.0
exd, exd .4 1 • 1
exd, 1 i t 5.4 12.7
x, x , bi n 1.7 4.1
x, bin, 1 i t 1.2 2.8

x, x, x, x 1.6 3.8
l1t , x , x , x 1 .5 3.5
exd, , 1t , x , x .47 1 • 1
1 it, x , 1 it , x 2.3 5.5

Four accelerated compare and branch
compare display to display,
compare d~splay to literal,

instructions:
6.3

12.8
compare packed to literal,
compare display numeric to literal

would account for 30% of all oynamically

MOVE x ,)(6.8 27.3
exd, exd .8 3.0
exo, x 1.2 4.5
1 it,)(2.0 8.6
1 it, bin 1.6 0.2
1 it, exd 1.8 7.0
x , x , bin 1.8 7.3
x , bin, .85 3.3
exd, rpt, bin .72 2.8
)(,)(, bin, b n.31 1.2
x , bin, x, b 1"13.1 12.0

Four accelerated s_ops:
move display to display, 9.8
move l~t to d~splay, 2.0
move packed to packed 3.0
move lit to display numeric, 1.8

6.0
5.4

executed Cobol verbs.

11 ?? 11 ..

would account for 16.6% of all dynamically executed Cobol verbs.

APPE~DIX IV: COBOL ACCELERATORS

OBJECTIVE
To d~termine what if any components should be added to FHP

~ardware to improve the performance of Cobol programs.

BACKGROUND
. There ~s a poss~b~l~ty o~ prov~d~ng operat~on acceleration
features on FHP systems that can enhance their execution of Cobol
programs. To decide what operations to accelerate we would like to know
the reJative frequenc~es.of Co~ol verb~ and dat~ type~. Unf6rtunately
there is a dearth of reliable information on this topic and we are
reduced to applying liberal doses of intuition to what stUdies are
available.

There are 3 DYNAMIC stUdies wh~ch address thlJ question:
360/85 design study
360 instruction frequency study
STUDY Z dynamic/stat~c Cobol verb study.

The first two were done to character~ze current 360 instruct~on
execut~on frequencies, the last to study actual Cobol dynam~cs.

One static study of 360 code generated by the DOS ANSI compiler
for a DGC application program prov~ded some surpr~ses. Two other stat~c
stud~es are most noteworthy for the~r d~screpancy with dynamlc data:

Guelph University study of university administrative
programs

STUDY Z stat~c Cobol verb study.

In STUDY Z the 6 dynamically mos~ fr!quently occurrin~ Cobol
~erbs, t~eir static fr~quenc)es, the rat;~ of dynamic to st~t;c
frequencies and comparison with IBM dynamic and guelph static
frequencies are:

verb %dyn %stat dynZ/statZ
Z IBM Z Guelph

IF 43 12.5 26 14-30 1.65
MOVE 26 35 33 30-40 .79
GOTO 12 33 20 14-30 .60
ADD 9.5 4.5 4.9 2-3 1.9
MPY 2.2 .55 4
SUB 2.1 .57 3.7

The last column indicates that the dynam~C frequency of operations ~s
typically from twice to 1/2 the~r static frequency and, therefore,
that the ratio ~i two dynam~c frequenc~es is from 4 t~mes to 1/4 that
of the ratio of their static frequencies.

In the IBM stud~es the Cobol ~erbs have dlsappeared in the 360
opcodes. At flrst we felt that we could ~solate the "archltectural
overhead" ~nstruct~ons from the "substant~ve" ones. Exam~nat~on 6i the
code generated by the DOS ANSI compiler Shakes that bel~e~. We had
guessed 30% to 40% overhead. In ~aet each C~bol verb ~s c~mpiled lnto a
STATIC average o~ 3 360 ~nstruct~ons. Unless thedynam~c811y m6st
frequent instructions compile into substantiallY fewer instructions than
average we are faced with ~erhaps 50% to 60% overhead. (Interestingly
~"e dynam~c study shows that 7 of the mostobv~~usly substant~ve
~nstruct~ons dynam~cally account ~or 40% of all ~nstruetions. I was too
~hy to guess that th~s was ~n fact all the substant~ve ~nstruet~ons and
that 60% rather th~n 30% were overhead. Unfortuna~elY try~n~ t6 ~nduce
the Cobol verbs which correspond to these sUb$tantive o~erations
produces the very dii~erent dynam~c irequenc~es ~n the above table,)

OBSERVATIONS

Despite these confusions there. are some underly~n9 s~mularit~es
among all these most frequent substantive Cobol verbs:

GOAL

1. They address 2 streams of data being read from memory and
compare them IF

2. They address 2 streams of data, 1 being read and 1 being
wr~tten, perhaps after a "trivial" transformation MOVE

3. They address 2 streams of data being read from memory and
"comb~ne" them to produce a 3rd stream to be written
to memory ADD SUB etc

The goal of Cobol accelerators should be to allow these kinds of
operations to proceed at memory-cache-JPDbus bandwidth.

REQUIREMENTS
To meet this goal we may need special purpose accelerators in

the following areas:

1 fetch can send 1 address to cache each cycle

2 cache can send 1 JPDbus w~dth of data each cycle

3 execute can
compare
pack
unpack
add, subtract

one JPDbus w~dth of data each cycle. IBM checks all such
operat~ons for valid data and oPt~6nallY aborts on ~nvalid
data. To be comparable to IBM in this matter and meet our
performance goals we may have to add special purpose checks.

4 The Cobol standard defines several bizarre data formats that
we must support. To do so in a reasonable fashion may require
speCial decode ROMs for ASCII and EBCDIC separate and
overpunch signs.

Note that accelerators for functions 1 and 2 w;,l also accelerate the
operation of Fortran and SPL programs and of kernel iunctions l~ke LAT.

SUMMARY
FHP hardware bel~eves that th~s 90al and these requirements to

meet th~s 90al are worth ~nvestmentln special purpose hardware and w~11
add such hardware as appears to be feasible to FHP systems, either in
all systems or as special opt~onal Cobol accelerator packages •. FHP
hardware solic~ts FHP software support, comment or correct~on of this
position.

